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SUMMARY

A novel implicit cell-vertex �nite volume method is described for the solution of the Navier–Stokes
equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the
momentum equation by multiplying the momentum equation with the unit normal vector to a control
volume boundary and integrating thereafter around this boundary. The resulting equations are expressed
solely in terms of the velocity components. Thus any di�culties with pressure or vorticity boundary
conditions are circumvented and the number of primary variables that need to be determined equals the
number of space dimensions. The method is applied to both the steady and unsteady two-dimensional
lid-driven cavity problem at Reynolds numbers up to 10000. Results are compared with those in the
literature and show excellent agreement. Copyright ? 2003 John Wiley & Sons, Ltd.
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solver

1. INTRODUCTION

The lid-driven cavity �ow of a Newtonian �uid has occupied the attention of the scienti�c
computational community since the pioneering paper of Burggraf [1] back in 1966. Over
the years the problem has spawned a huge number of papers; mainly concerned with the
development of computational algorithms where, in a continuous drive to demonstrate the
superior accuracy and stability properties of their latest numerical method, authors have applied
it to one of the problem’s two-dimensional rectangular or three-dimensional cubic forms.
Unsurprisingly, the majority of papers dealing with the numerical solution to the lid-driven

cavity problem have been concerned with the two-dimensional problem, and accordingly and
for the sake of brevity we will con�ne our literature review to computations in rectangles. In
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earlier papers the �nite di�erence method was prominent and was adopted, for example, by
Gatski et al. [2] (who used a velocity–vorticity formulation), Ghia et al. [3] in conjunction
with a multigrid approach, Gustafson and Halasi [4, 5] who preferred the MAC method, and
by Soh and Goodrich [6] and Goodrich et al. [7]. However, recent applications of �nite dif-
ference schemes to the two-dimensional problem may sometimes be found in the literature:
Kupferman [8], for example, used �nite di�erence methods with a pure stream function for-
mulation that bypassed the need for vorticity boundary conditions. More conventionally, Guo
[9] used a staggered MAC-like second-order numerical scheme, applicable to either two or
three-dimensional �ows, for solving for �ow in a two-dimensional square driven cavity at
Reynolds numbers up to 3200. Papers for the two-dimensional problem incorporating �nite
element methods (see, for example References [10–12]), �nite volume methods in various
guises [13–15], boundary element methods [16–18], a radial basis function network method
[19] and the lattice Boltzmann method [20], have also appeared in the recent literature.
The presence of corner singularities in both the two-dimensional and three-dimensional ge-

ometries is potentially hazardous for high-order methods of the spectral or p-�nite element
type, due to the Gibbs phenomenon. Particularly dangerous are the singularities at the points
or lines of intersection between the moving lid and stationary walls since here the velocity
�eld is discontinuous. Various high-order methods have been employed with success despite
the di�culties associated with accuracy and control of oscillations near the corner/edge sin-
gularities, however. One manner in which these di�culties have been overcome is to change
the problem: the tangential velocity on the moving lid is replaced by a polynomial that van-
ishes (together with at least its �rst derivatives) on the edges or corners where the lid and
stationary walls meet. This is the so-called regularized driven cavity problem, assumed to
have qualitatively the same dynamical properties as the driven cavity �ow and solved to good
e�ect by, for example, Shen [21], Leriche and Deville [22] and Botella [23]. A piecewise
linear approximation to the constant tangential lid velocity, made to vanish at the lid-wall
singularities was used by Barragy and Carey [24] in their p-�nite element approach to the
two-dimensional lid-driven problem. No modi�cation was made to the original problem by
Henderson [25] in his hp-adaptive spectral element method: his calculations sought to resolve
the singularity directly through mesh re�nement near the corners. Arguably, the most satis-
factory solution to the lid-driven problem is to subtract o� the leading part of the known
asymptotic form of the Navier–Stokes singularity, leaving a more regular problem to be tack-
led, say, by a Chebyshev collocation method. This is what was done by Botella and Peyret
[26, 27]. Of course, corner singularities between a stationary and a moving wall of the type
described by the asymptotic expansions of Mo�att [28] and Botella and Peyret [27], amongst
others, are physically unrealizable. The in�nite acceleration of �uid particles implied by the
change of boundary conditions requires an in�nite stress at the corner. This observation was
made by G.I. Taylor in 1962 in the context of the now famous ‘scraper problem’ [29]. What
may be envisaged happening in reality for the lid-driven cavity problem is that �uid leaves or
enters the cavity through ‘leaks’ along the lines of contact between the vertical walls and the
moving lid. The unregularized lid-driven cavity problem is thus a mathematical idealization
of the physical problem (and all the more so when one con�nes the �ow to two dimensions!)
However, Hansen and Kelmanson [30] have shown that as the leak heights tend to zero
excellent agreement between the leaky and unregularized problems may be obtained. In the
present paper we insert leaks across the heights of the �nite volumes in the corners between
the lid and the vertical walls for the two-dimensional problem. Although this regularizes the
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problem somewhat, the leak heights are only 5:7656×10−5 for the �nest mesh used in our
computations in the unit square.
There are several di�culties with many of the approaches cited in the previous para-

graphs. The primitive variable form of the Navier–Stokes equations is di�cult to solve due
to lack of an independent equation for the pressure term. Velocity–vorticity formulations of
the Navier–Stokes equations have advantages over the velocity–pressure-based equations in
that the pressure term is eliminated from the equations, and the well-known di�culty as-
sociated with wall pressure boundary conditions is avoided. However, a potential di�culty
with this approach is that the vorticity value on the wall is not generally known a priori.
Moreover, with the majority of three-dimensional velocity–vorticity methods it is necessary to
solve three transport equations for the vorticity components and three Poisson equations (or
their equivalents) for the velocity components [31]. For a discussion of the issue of vorticity
boundary conditions, as well as a description of a new velocity–vorticity method requiring
no vorticity boundary conditions and the determination of only N primary variables for N -
dimensional problems (N =2; 3), the reader is referred to Reference [31]. For earlier general
reviews of the mathematical formulation of the incompressible Navier–Stokes equations we
refer to References [32, 33] where a large number of references are mentioned.
The �nite volume method proposed in this paper involves multiplication of the primitive

variable-based momentum equation with the unit vector normal to a control volume boundary.
Integration thereafter around the boundary of the same control volume thus eliminates the pres-
sure term from the governing equations. Therefore any di�culty associated with the pressure
term is avoided in a similar manner to that achieved by the velocity–vorticity formulation. Our
method possesses two signi�cant advantages over the majority of velocity–vorticity methods,
however. First, unlike most velocity–vorticity formulations, no vorticity boundary conditions
are required on the wall, since the resulting equations are expressed solely in terms of the
velocity components. Only no-slip velocity boundary conditions are required. Secondly, the
number of primary variables that need to be determined equals the number of space di-
mensions. The new velocity–vorticity formulation of Davies and Carpenter [31] referred to
above also possesses these advantages over traditional velocity–vorticity methods. However,
the method of Davies and Carpenter has been largely presented in the context of the distur-
bance equations in boundary layer �ow and their method requires that the primary variables
be constrained to satisfy certain limiting conditions. The method used in the present paper
su�ers from neither of these limitations and since the primary variables are just the compo-
nents of velocity, no determination of secondary variables in an iterative or time-marching
scheme is required. The implementation in this respect is thus straightforward.
In addition to requiring no vorticity or pressure boundary conditions and using only the

velocity components as primary variables, our �nite volume method is fully implicit. Implicit
�nite volume methods have enjoyed widespread use in the literature, due in part, no doubt,
to their attractive stability properties and the utility of �nite volume methods for problems
de�ned in complex geometries. Con�ning our attention to just the past �ve years, for example,
implicit �nite volume methods have been employed to good e�ect for computing the evolution
of surfactant concentration in investigations of the e�ects of surfactants on the rheological
properties of emulsions [34] and on the shape of �uid interfaces in Stokes �ow [35]. They
have also been used in the simulation of three-dimensional mould �lling problems in injection
moulding [36]. Three-dimensional time-dependent viscoelastic �ows have been tackled with
implicit �nite volume methods [37, 38], and they have seen service in the numerical modelling
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of turbulence [39, 40]. Some attention in the literature has been given to the development
and implementation of Krylov subspace methods for the resolution of the algebraic systems
arising from a discretization using implicit �nite volume methods of the convection–di�usion–
reaction partial di�erential equations that describe the partially ionized �ow in the boundary
layer of a tokamak fusion reactor [40]. Comparisons have also been made of di�erent Krylov
subspace methods (GMRES, BiCGStab, etc.) for the solution of the algebraic systems of
equations arising from an implicit �nite volume approximation of the Navier–Stokes equations
on unstructured grids [41]. For an analysis of cell-vertex �nite volume methods for the cases
of pure convection and convection–di�usion problems, the reader is referred to the papers of
Morton and Stynes [42] and Morton et al. [43].
The present paper is organized as follows: in Section 2 we outline the governing equations

and their discretization using our �nite volume method. Both steady and time-dependent for-
mulations of our method are described. In the steady form, a Newton method is employed. For
both the steady and unsteady algorithms block Gaussian elimination is used for solving the
resulting algebraic equations. Section 3 is dedicated to a discussion of the numerical results
obtained for the two-dimensional lid-driven cavity problem at Reynolds numbers up to 10 000.
Computations are performed on three meshes of increasing mesh density; with the �nest of
which are associated 132 098 degrees of freedom. The accuracy of the results at various
Reynolds numbers in the literature for the two-dimensional driven cavity problem is usually
assessed by performing a comparison of the streamwise and spanwise velocity pro�les along
the vertical and horizontal lines of symmetry with those of other authors, or by a quantitative
comparison of the stream function value at the centre of the primary vortex, for example.
Similar comparisons may be found in the present paper for the steady problem. Additionally,
we consider convergence of the RMS value of the update vector for the velocity �eld in
our Newton method, and demonstrate that this tends to zero in magnitude exponentially fast.
Smooth solutions, in good (sometimes even excellent) agreement with those in the literature,
are presented.

2. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATION

The incompressible unsteady Navier–Stokes equations may be written in dimensionless form
over some domain �⊂R2 as

∇ · u=0 (1)

@u
@t
+ (u · ∇)u=−∇p+ 1

Re
∇2u (2)

where, in the usual notation, u=(u; v) denotes the velocity �eld, p the pressure and Re is a
Reynolds number.
Suppose now that � may be partitioned into quadrilateral �nite volumes �i; j with (i; j) in

some �nite subset of Z2. Let n denote an outward pointing normal vector to the boundary
@�i; j of �i; j. Then integrating (1) over one such �nite volume �i; j we get, on application of
the divergence theorem, that ∮

@�i; j

n · u ds=0 (3)
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Figure 1. A four-node quadrilateral �nite volume element �ij.

Let us multiply (2) with n and integrate around the boundary @�i; j of �i; j to get∮
@�i; j

n×
[
@u
@t
+ (u · ∇)u+∇p− 1

Re
∇2u

]
ds= 0 (4)

Then (4) may be rewritten as∮
@�i; j

n×
[
@u
@t
+ (∇×u)×u+ 1

Re
∇×(∇×u)

]
ds= 0 (5)

Note that no pressure term appears in (3) and (5). In fact (5) is equal to the �nite volume
integral of the vorticity transport equation. However, here it is expressed solely in terms
of the velocity components and therefore any di�culties associated with vorticity boundary
conditions are obviated.
In this paper we will solve (3) and (5) for the velocity components in coupled form by

using a direct solver. For the sake of simplicity (and only for this reason) our expos�e shall
be limited to rectangular control volumes with sides parallel to the Cartesian axes Ox and
Oy, and �i; j shall denote the cell having lower left-hand vertex labelled (i; j), as shown in
Figure 1. The velocity unknowns uni; j=(un

i; j; v
n
i; j) at the nth time step or Newton iterate are

located at cell vertices and physical points are denoted (xi; j; yi; j) in an obvious way.

2.1. Time dependent Navier–Stokes equations

The continuity equation (3) is enforced at time level t=(n+ 1)�t. To evaluate the integral
over the boundary of �i; j, we use the mid-point rule on each of the four faces of �i; j, viz.

∮
@�i; j

n · un+1 ds= vn+1i+1; j+1 + vn+1i; j+1

2
(xi+1; j+1 − xi; j+1)−

vn+1i+1; j + vn+1i; j

2
(xi+1; j − xi; j)
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+
un+1
i+1; j+1 + un+1

i+1; j

2
(yi+1; j+1 − yi+1; j)−

un+1
i; j+1 + un+1

i; j

2
(yi; j+1 − yi; j) (6)

For the time-dependent problem we discretize the integrand in (5) with a Crank–Nicolson
method which is second-order accurate in time:∮

@�i; j

n×
[
un+1 − un
�t

+
En+1 + En

2

]
ds=0 (7)

where En in (7) is de�ned by

En=(En
1 ; E

n
2)=!n×un + 1

Re
∇×!n (8)

The line integral in (7) is evaluated using the mid-point rule on each of the cell faces, this
yielding

(yi+1; j+1 − yi+1; j)
2

[
(vn+1i+1; j+1 − vni+1; j+1)

�t
+
(vn+1i+1; j − vni+1; j)

�t
+ En+1

2; i+1; j+1=2 + En
2; i+1; j+1=2

]

− (xi+1; j+1 − xi; j+1)
2

[
(un+1

i+1; j+1 − un
i+1; j+1)

�t
+
(un+1

i; j+1 − un
i; j+1)

�t
+ En+1

1; i+1=2; j+1 + En
1; i+1=2; j+1

]

− (yi; j+1 − yi; j)
2

[
(vn+1i; j+1 − vni; j+1)

�t
+
(vn+1i; j − vni; j)

�t
+ En+1

2; i; j+1=2 + En
2; i; j+1=2

]

+
(xi+1; j − xi; j)

2

[
(un+1

i+1; j − un
i+1; j)

�t
+
(un+1

i; j − un
i; j)

�t
+ En+1

1; i+1=2; j + En
1; i+1=2; j

]
=0 (9)

The �ux vector components E1; i+1=2; j and E2; i; j+1=2 appearing in (9) are computed as follows:

E1; i+1=2; j =− 1
4 (vi; j + vi+1; j)(!i+1=2; j+1=2 +!i+1=2; j−1=2)

+
1
Re

!i+1=2; j+1=2 −!i+1=2; j−1=2
yi+1=2; j+1=2 − yi+1=2; j−1=2

(10)

E2; i; j+1=2 = 1
4(ui; j + ui; j+1)(!i+1=2; j+1=2 +!i−1=2; j+1=2)

− 1
Re

!i+1=2; j+1=2 −!i−1=2; j+1=2
xi+1=2; j+1=2 − xi−1=2; j+1=2

(11)

The non-linearities in En+1
1; i+1=2; j and En+1

2; i; j+1=2 are treated by taking the velocity components
(u; v) from the previous time step. To handle the vorticity terms in (10) and (11) a vorticity

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:57–77



PART I. HIGH REYNOLDS NUMBER FLOW CALCULATIONS 63

value at the centre of the (i; j)th cell �i; j is calculated as

!i+1=2; j+1=2 =
1

Area �i; j

∮
@�i; j

n×u ds (12)

where the line integral on the right-hand side of (12) is evaluated using the mid-point rule
on each of the cell faces, as before.

2.2. Steady Navier–Stokes equations

The same �nite volumes described in Section 2.1 are used in the discretization of the steady
problem. Let a superscript n now denote an iteration count. The steady form of (3) and (5)
is solved using Newton’s method: substituting u= un+1 into (3) and (5) where

un+1 = un + �un+1 (13)

and neglecting second-order terms we get∮
@�i; j

n · �un+1 ds=−
∮
@�i; j

n · un ds (14)

and ∮
@�i; j

n×
[
�!n+1×un +!n×�un+1 +

1
Re

∇×�!n+1
]
ds=−

∮
@�i; j

n×En ds (15)

(14) and (15) are discretized in a similar manner to Equations (6) and (7) and solved in
coupled form using a direct solver. The new values of the velocity components at the (n+1)th
iteration are calculated as follows:

un+1i; j = u
n
i; j + �un+1i; j =� (16)

where � is an under-relaxation parameter chosen in order to ensure convergence. In the present
calculations its value is set equal to 5.0.
For both the steady and unsteady algorithms described in the previous two sections, mass

conservation (Equations (6) and (14)) is applied in each �nite volume. The vorticity transport
equation (Equations (7) and (15)) is applied in each �nite volume except those next to the
walls, vorticity creation thus being permitted within these latter elements in order to satisfy the
no-slip boundary conditions. The resulting algebraic systems of equations for the cell vertex
values of un+1 or �un+1 are block quad-diagonal and are solved at each step (time step or
Newton iterate) by using block Gaussian elimination. Considerable computational time has
been saved with extensive use of the Intel Math Kernel Library for block matrix–matrix and
matrix–vector operations.

3. NUMERICAL RESULTS

In order to verify its accuracy at high Reynolds numbers and compute the base �ow required
for a linear stability analysis (see Part II of this paper [44]), the present fully implicit velocity
formulation is applied to steady lid-driven cavity �ow in a square [0; 1]×[0; 1], as shown in
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Primary vortex

Upstream
secondary eddy

Downstream
secondary eddy

Upper
secondary eddy

u=0, v=0

u=1, v=0

BA

CD

Figure 2. Lid-driven cavity boundary conditions with the basic features of cavity �ow.

Figure 2. The singularities situated between the lid and the cavity walls (at points A and B
of Figure 2), are handled by introducing ‘leaks’ over the height of the upper corner �nite
volumes. In fact, this is the most suitable way of applying the physical boundary conditions.
The mass �ow between the lid and the cavity wall weakens the primary vortex strength within
the cavity, depending on the size of the leaks. As the size of these leaks approaches zero,
however, the solutions converge towards the solutions obtained with the physically unrealizable
boundary conditions [30].
In the present work three di�erent grids are employed: coarse (M1: 129×129 grid points),

medium (M2: 193×193 grid points) and �ne (M3: 257×257 grid points), in order to investi-
gate grid dependency of the solution. These are shown in Figure 3. The smallest �nite volume
cells are those situated at corners A and B and have heights 1:1665×10−4, 7:7170×10−5 and
5:7656×10−5 for the coarse, medium and �ne grids, respectively. As mentioned above, these
cell sizes correspond to the size of the leaks between the lid and the vertical cavity walls. As
may be seen in Figure 3, the highest density of grid points is to be found near the lid and
walls. This is done in order to make the size of the leaks as small as possible and to resolve
adequately the very thin boundary layers on the lid and cavity walls.
The �rst numerical results correspond to the solution of the steady Navier–Stokes equations

on the �nest grid (M3) at Reynolds numbers ranging from 0 to 10 000 where the Reynolds
number for this �ow is based on the lid velocity and cavity height. For the solution of the
steady Navier–Stokes equations, Newton’s method is used, as explained in Section 2.2. The
initial conditions for Newton’s method are calculated from the direct solution of Stokes �ow.
Then the �ow at Re=100, 400, 1000, 3200, 5000, 7500 and 10 000 is solved using the
previous solution as an initial condition.
The computed streamlines are presented in Figure 4. At Re=0, the streamlines and vor-

ticity contours are symmetric about the vertical centreline of the cavity. At the lower cor-
ners upstream and downstream secondary eddies are visible and are equal in size. Although
the analytical solution predicts an in�nite number of exponentially decaying eddies at the
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Figure 3. The three computational meshes (with detail of the top right-hand corner)
used for the calculations presented in this paper. Top to bottom: Mesh M1 (129×129
grid points), Mesh M2 (193×193 grid points), Mesh M3 (257×257 grid points).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:57–77



66 M. SAHIN AND R. G. OWENS

Re=0 Re=100

Re=400 Re=1000

Re=5000 Re=10000

Figure 4. Streamlines computed with mesh M3. Reynolds numbers from 0 to 10 000. The stream function
equals 0 on the cavity boundary and the contour levels shown for each plot are −0:11, −0:09, −0:07,

−0:05, −0:03, −0:01, −0:001, −0:0001, −0:00001, 0.0, 0.00001, 0.0001, 0.001 and 0.01.
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Re=0 Re=100

Re=400 Re=1000

Re=5000 Re=10000

Figure 5. Contours of vorticity computed with mesh M3. Reynolds numbers from 0 to 10 000. Contour
levels shown for each plot are −5:0, −4:0, −3:0, −2:0, −1:0, 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0.
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Table I. Table of vorticity values at the primary vortex centre. Mesh M3.

Re Vorticity at primary vortex centre

0 −3:2208
100 −3:1655
400 −2:2950
1000 −2:0664
3200 −1:9593
5000 −1:9392
7500 −1:9275
10 000 −1:9231

corners [28], it is not possible to resolve these eddies with a �nite number of grid points.
At a Reynolds number of around 100, the primary vortex moves towards the right-hand wall
and the downstream secondary eddy starts to enlarge in size. At a Reynolds number of 400,
the primary vortex starts to move towards the cavity centre and it continues to move to the
centre even at high Reynolds numbers. Evidence of growth in the upstream secondary eddy
at a Reynolds number of 400 is also now visible. If the Reynolds number is increased fur-
ther another secondary eddy emerges on the upper left-hand cavity wall. Further increases in
the Reynolds number makes visible tertiary level vortices. It might be considered surprising
that smooth solutions at these high Reynolds numbers are possible with a central di�erence
scheme. However, Hafez and Soliman [45], who also used a central di�erence scheme, pre-
sented solutions of the steady Navier–Stokes equations for the lid-driven cavity problem at
Reynolds numbers up to 30 000 obtained using a Newton method combined with a direct
solver.
In Figure 5 we note that as the Reynolds number increases the vorticity contours move

away from the cavity centre towards the cavity walls and indicates that very strong vorticity
gradients develop on the lid and the cavity walls (especially the right-hand vertical wall)
for higher Reynolds numbers. In contrast, in the centre of the cavity almost no vorticity
gradient is evident at all. The �uid begins to rotate like a rigid body with a constant angular
velocity. The vorticity values at the centre of the primary vortex—as computed with mesh
M3—are shown in Table I. As the Reynolds number increases there is a clear trend towards
the theoretical in�nite Re value of −1:886 (see Burggraf [1]).
For an assessment of the accuracy of the present results, the velocity components through

the vertical and horizontal centrelines of the cavity are compared with the corresponding
numerical results of Ghia et al. [3] in Figures 6 and 7. The comparison shows good agreement,
particularly at Reynolds numbers up to 5000. However, at a Reynolds number of 10 000
the present method (featuring a non-uniform grid) gives slightly higher extremal values of
the velocity components since it is di�cult to resolve the very thin boundary layer with a
uniform grid, even with one as �ne as the 257×257 grid of Ghia et al. [3]. As may be
seen from Figures. 6 and 7, as the Reynolds number increases the extremal values of the
velocity components increase in magnitude and the turning points get progressively closer to
the wall. The values of the extrema in the velocity components and the minimum values of
the stream function are given in Table II and are compared with other results in the literature.
Although the results at low Reynolds numbers are in good agreement, at high Reynolds
number they deviate from each other, particularly at Re=10000. The present results are in
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Figure 6. Pro�les of u along the line x=0:5 computed with mesh M3. Reynolds numbers from 0 to
10 000. Also shown are the results ( ) of Ghia et al. [3].
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Figure 7. Pro�les of v along the line y=0:5 computed with mesh M3. Reynolds numbers from 0 to
10 000. Also shown are the results ( ) of Ghia et al. [3].
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Table III. Variation in location of the secondary eddies with Re number. Mesh M3.

Downstream secondary eddy Upstream secondary eddy Upper secondary eddy

Re xmax ; ymax  max xmax ; ymax  max xmax ; ymax  max

0 0.9630,0.0378 0.222065E-05 0.0369,0.0378 0.222065E-05 — —
100 0.9424,0.0610 0.126584E-04 0.0332,0.0352 0.179303E-05 — —
400 0.8835,0.1203 0.640440E-03 0.0508,0.0461 0.142720E-04 — —
1000 0.8658,0.1119 0.172397E-02 0.0826,0.0776 0.233014E-03 — —
3200 0.8259,0.0847 0.282335E-02 0.0799,0.1203 0.111207E-02 0.0530,0.8984 0.705801E-03
5000 0.8081,0.0741 0.306508E-02 0.0720,0.1382 0.136890E-02 0.0621,0.9108 0.143828E-02
7500 0.7894,0.0642 0.322261E-02 0.0645,0.1525 0.151998E-02 0.0670,0.9108 0.211980E-02
10 000 0.7796,0.0610 0.319479E-02 0.0598,0.1624 0.159044E-02 0.0694,0.9108 0.261144E-02

very close agreement with those of Barragy and Carey [24] and the maximum di�erence
in the minimum value of the stream function computed by these authors and by us is less
than 0.138%. The results of Botella and Peyret [26], calculated with a Chebyshev collocation
method and featuring subtraction of the leading part of the corner singularities, are believed
to be very accurate but their results do not extend to high Reynolds numbers. In addition, in
Table III we present results showing how the location of the secondary eddies change with
the Reynolds number.
In order to demonstrate the convergence characteristics of the present method, we calculate

the RMS value RMS(n) of the update vector �un+1 at the (n+ 1)th Newton iterate as

RMS(n)=

√
1

NxNy

Nx;Ny∑
i; j=1

(un+1
i; j − un

i; j)2 + (v
n+1
i; j − vni; j)2 =

1
�
√

NxNy
‖�un+1‖2 (17)

where Nx and Ny denote the number of grid points in the x and y directions, respectively.
Figure 8 shows a plot on a log-normal scale of RMS(n) versus the iteration number n at
Reynolds numbers of 100 and 10 000. The �gure shows an exponential decay in RMS(n)
and in both cases RMS(n) is of the order of 1×10−8 after 70 Newton iterations. From our
numerical experiments it would seem that the rate of convergence is independent of the
Reynolds number for a su�ciently large value of �. To gain insight into why this might
be so, we follow an approximate error analysis and consider the non-linear system (3) and
(5) summed up over the appropriate i; j and supplemented with velocity boundary conditions.
This system might be written in the form

F(u)= 0 (18)

for some vector-valued functional F, so that from (16)

un+1 − un= − 1
�

(
@F
@u

)−1
u= un

F(un) (19)
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and

un+2 − un+1 =−1
�

(
@F
@u

)−1
u= un+1

F(un+1) (20)

We let �n denote the L2 norm of un+1 − un and from (19)–(20) see that

�n+1
�n
=

‖(@F=@u)−1u= un+1F(un+1)‖2
‖(@F=@u)−1u= unF(un)‖2

≈ ‖(@F=@u)−1u= un+1[F(un)− 1=�(@F=@u)u= un(@F=@u)−1u= unF(un)]‖2
‖(@F=@u)−1u= unF(un)‖2

=
(
1− 1

�

) ‖(@F=@u)−1u= un+1F(un)‖2
‖(@F=@u)−1u= unF(un)‖2

(21)

Supposing that the Jacobian matrix is approximately constant, Equation (21) leads to

�n+1
�n

≈ 1− 1
�

(22)

so that

log �n+1 − log �n= log
(
1− 1

�

)
(23)

and hence

log �n − log �0 = n log
(
1− 1

�

)
(24)

From the above relation we computed the gradient of the function �n=
√

NxNy of n and found
this to be −0:0969 for �=5:0. This is identical to four decimal places with the slopes com-
puted from the RMS plots for Re=100 and 10 000 shown in Figure 8. However this level
of agreement may not hold at even higher Reynolds numbers since it may not be possible to
use the same � value in order to maintain convergence. The initial value of the RMS depends
upon the di�erence between the initial condition and the converged solution. This explains
why the initial RMS value and all subsequent RMS values at Re=100 are larger than those
computed at the same iteration count at Re=10000.
The second set of numerical results corresponds to the time-dependent direct numerical

simulation of an impulsively accelerated lid-driven cavity �ow at a Reynolds number of
10 000. The streamlines of the time-dependent solutions at this Reynolds number are presented
in Figure 9 at non-dimensional time levels of 2.00, 4.00, 6.00, 8.00, 10.00 and 12.00. The
formation of the primary vortex and its transport towards the cavity centre may be seen
clearly. On the current PC (with a 1200 MHz Pentium IV processor) we could only a�ord
to continue calculations up to a non-dimensional time level of 20.00, although we would
like to determine at which Reynolds number a Hopf bifurcation takes place by computing
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Figure 8. RMS value RMS(n) (see Equation (17)) against iteration number n. Mesh M3. �=5:0.

time-accurate solutions. Unfortunately, near the critical Reynolds number the most dangerous
eigenvalue has a real part which is very small. As a consequence, determination of whether
or not a steady solution exists at a near-critical Reynolds number may take a very long time
and is computationally very expensive. Therefore, in Part II of this paper [44] we employ a
linear stability analysis to determine the critical Reynolds number at which a Hopf bifurcation
takes place.

4. CONCLUSIONS

A novel �nite volume method has been presented for the solution of both the steady and
unsteady incompressible Navier–Stokes equations. The method involves multiplication of the
primitive-variable based momentum equation with a unit vector normal to a �nite volume
boundary and subsequent integration of this equation along the boundary of the same control
volume. Thus any di�culties associated with the pressure term or vorticity boundary conditions
are obviated. The velocity components are solved in strong coupled form by using a direct
solver. The method is applied to the lid-driven cavity problem for both steady and unsteady
�ows at Reynolds numbers up to 10 000. Our solutions are smooth and in excellent agreement
with benchmark results in the literature. Use of a direct solution technique ensures a solenoidal
velocity �eld at each iterative or time step for the steady and unsteady cases, respectively.
Although we have presented only a two-dimensional application of the present method,

the extension of the method to three-dimensional problems would be interesting since there
are only three unknowns that would need to be determined, which is lower than both the
primitive-variable based and most velocity–vorticity formulations [31]. This may be done by
imposing the continuity equation within each control volume and by computing the closed-line
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t=2.00 t=4.00

t=6.00 t=8.00

t=10.00 t=12.00

Figure 9. Contours of computed streamlines with mesh M2 for an impulsively accelerated
lid-driven cavity at Re=10 000. Contour levels shown for each plot are −0:10, −0:09,
−0:08, −0:07, −0:06, −0:05, −0:04, −0:03, −0:02, −0:01, −0:005, −0:001, −0:0001,

−0:00001, 0.0, 0.00001, 0.0001, 0.001 and 0.005.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:57–77



76 M. SAHIN AND R. G. OWENS

integral of the product of a normal vector with the momentum equation around the control
volume faces in a similar manner to (5). A weakness of the present method, however, is that
due to the linear dependence of some of the closed-line integrals, it may be di�cult to match
the number of equations to the number of unknowns for more complex con�gurations. One
possible solution, for cuboidal �nite volumes, at least, might be to adopt a staggered grid
arrangement with velocity components now de�ned at the centre of the faces with respect to
which they point in the normal direction.
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